Towards Synthesis from Assume-Guarantee Contracts involving Infinite Theories: A Preliminary Report

FormaliSE 2016

Andreas Katis ¹ Andrew Gacek ² Michael W. Whalen ¹

¹Department of Computer Science and Engineering, University of Minnesota

²Rockwell Collins Advanced Technology Center

May 15, 2016
Outline

1. Introduction
 - Motivation
 - Assume-Guarantee Contracts

2. Realizability
 - Definitions
 - Algorithm

3. Synthesis from Contracts
 - Goal
 - AE-VAL Skolemizer for $\forall \exists$ formulas
 - Algorithm
 - Implementation

4. Future Work
Motivation: Solving the Architectural Analysis Problem

- Critical embedded systems development
- Safety properties for infinite state reactive systems
- “Does there exist an implementation for the given requirements?”
 “Is the given specification (contract) realizable?”
Motivation: Solving the Architectural Analysis Problem

- Critical embedded systems development
- Safety properties for infinite state reactive systems
- “Does there exist an implementation for the given requirements?”
 “Is the given specification (contract) realizable?”
- Current goal: “Can we synthesize implementations from realizable requirements?”
Assume-Guarantee Contracts

Assumptions A: Constraints on the component’s input
Guarantees G: Constraints on the output
Is the Contract (A,G) realizable?
Assume-Guarantee Contracts

Assumption: $x \neq y$

Guarantee: $z = \begin{cases}
\text{true, if } x \leq y \\
\text{false, if } x \geq y
\end{cases}$

- Assumptions A: Constraints on the component’s input
- Guarantees G: Constraints on the output
- Is the Contract (A,G) realizable? **YES**
- Not realizable if we remove the assumption
Definitions

- Systems are defined in terms of inputs and states, ranged over by variables i and s.
- A symbolic transition system is defined: (I, T)

$$I(s_0) \land T(s_0, i_1, s_1) \land \ldots \land T(s_{k-1}, i_k, s_k)$$

- A contract is a pair (A, G) with
 Assumptions $A : (state \times input) \rightarrow bool$
 Guarantees G: $G_I : state \rightarrow bool$
 $G_T : (state \times input \times state) \rightarrow bool$
Definitions

Definition (Viable)

\[\text{Viable}(s) = \forall i. A(s, i) \Rightarrow \exists s'. G_T(s, i, s') \land \text{Viable}(s') \]

Definition (Realizable Contract)

\[\exists s. G_I(s) \land \text{Viable}(s) \]

Definition (Synthesized Implementation)

A synthesized implementation is a witness of the contract’s realizability
Algorithm

Definition (Finite Viability)

A state s is viable for n steps, written $Viable_n(s)$ if G_T can keep responding to valid inputs for at least n steps.

$$\forall i_1. A(s, i_1) \Rightarrow \exists s_1. GT(s, i_1, s_1) \land \forall i_2. A(s_1, i_2) \Rightarrow \exists s_2. GT(s_1, i_2, s_2) \land \ldots \land \forall i_n. A(s_{n-1}, i_n) \Rightarrow \exists s_n. GT(s_{n-1}, i_n, s_n)$$

Definition (One-step Extension)

A state s is extendable after n steps, written $Extend_n(s)$ if any valid path of length n from s can be extended in response to any input.

$$\forall i_1, s_1, \ldots, i_n, s_n. \quad A(s, i_1) \land GT(s, i_1, s_1) \land \ldots \land A(s_{n-1}, i_n) \land GT(s_{n-1}, i_n, s_n) \Rightarrow \forall i. A(s_n, i) \Rightarrow \exists s'. GT(s_n, i, s')$$
Algorithm

- **Checking Algorithm:** Find n such that both checks are true:

 \[
 \text{BaseCheck}(n) = \exists s. G_l(s) \land \text{Viable}_n(s) \\
 \text{ExtendCheck}(n) = \forall s. \text{Extend}_n(s)
 \]

- $2n$ quantifier alternations in `BaseCheck`
 - Extremely difficult SMT problem
 - Solvers fail very quickly

- Instead, use an approximation:

 \[
 \text{BaseCheck}'(n) = \forall k \leq n. (\forall s. G_l(s) \Rightarrow \text{Extend}_k(s))
 \]
Goal

- Can we effectively use our method to solve the synthesis problem?

- Problem: SMT-solvers cannot be used directly (nested quantifiers)

- Solution: **AE-VAL: Horn-based Skolemizer for \(\forall \exists \) formulas**

AE-VAL Skolemizer for $\forall \exists$ formulas

- $S(\vec{x}) \Rightarrow \exists \vec{y}. T(\vec{x}, \vec{y})$
- Model Based Projection to extract Skolem relations
- Linear Integer Arithmetic

$$S(\vec{x}) \Rightarrow \exists \vec{y}. T(\vec{x}, \vec{y})$$

$Sk_{\vec{y}}(\vec{x}, \vec{y}) \equiv \begin{cases}
\phi_{\vec{y}_1}(\vec{x}, \vec{y}) & \text{if } I_1(\vec{x}) \\
\phi_{\vec{y}_2}(\vec{x}, \vec{y}) & \text{else if } I_2(\vec{x}) \\
\cdots & \cdots \\
\phi_{\vec{y}_n}(\vec{x}, \vec{y}) & \text{else } I_n(\vec{x})
\end{cases}$
Using AE-VAL for Synthesis

- Two separate phases for BaseCheck’ and ExtendCheck

\[\text{BaseCheck'}(n) = \forall k \leq n. (\forall s. G_I(s) \Rightarrow \text{Extend}_k(s)) \]

\[\text{ExtendCheck}(n) = \forall s. \text{Extend}_n(s) \]

\[\text{Extend}_n(s) = \forall i_1, s_1, \ldots, i_n, s_n. \]
\[A(s, i_1) \land G_T(s, i_1, s_1) \land \ldots \land A(s_{n-1}, i_n) \land G_T(s_{n-1}, i_n, s_n) \Rightarrow \]
\[\forall i. A(s_n, i) \Rightarrow \exists s'. G_T(s_n, i, s') \]

\[\forall i_1, s_1, \ldots, i_n, s_n, i. \]
\[A(s, i_1) \land G_T(s, i_1, s_1) \land \ldots \land \]
\[A(s_{n-1}, i_n) \land G_T(s_{n-1}, i_n, s_n) \land A(s_n, i) \Rightarrow \]
\[\exists s'. G_T(s_n, i, s') \]
Synthesis Algorithm

```plaintext
assign_GI_witness_to_S;
update_array_history;

// Perform bounded 'base check' synthesis
read_inputs;
base_check'_1_solution;
update_array_history;
...
read_inputs;
base_check'_k_solution;
update_array_history;

// Perform recurrence from 'extends' check
while(1) {
    read_inputs;
    extend_check_k_solution;
    update_array_history;
}
```

1. Construct history arrays for variables in I and S.
2. Initialize variable values (0th element of array) using G_I
3. Initialize history of length k using BaseCheck' Skolem relations
4. Use ExtendCheck’s solution in a recurrence loop to define the next-step values
Skolem relation example

ite([&
 $defs__rising_edge~1.Mode_Control_Impl_Instance__signal$0
 (!$Mode_Control_Impl_Instance__seconds_to_cook$0>=0)
 !$defs__initially_true~0.Mode_Control_Impl_Instance__result$0
],
 $Mode_Control_Impl_Instance__is_setup$0
 $defs__rising_edge~1.Mode_Control_Impl_Instance__re$0
 (!$Mode_Control_Impl_Instance__is_cooking$0
 $defs__rising_edge~1.Mode_Control_Impl_Instance__signal$0
 !$TOTAL_COMP_HIST$0
 !$SYSTEM_ASSUMP_HIST$0
 !$Mode_Control_Impl_Instance__is_suspended$0
 (!$Mode_Control_Impl_Instance__is_running$0
 $defs__rising_edge~0.Mode_Control_Impl_Instance__re$0
 !$defs__initially_true~0.Mode_Control_Impl_Instance__b$0
 $defs__initially_true~0.Mode_Control_Impl_Instance__result$0
 $defs__rising_edge~2.Mode_Control_Impl_Instance__re$0
 $defs__rising_edge~2.Mode_Control_Impl_Instance__signal$0
],
 ite([&
 %init
 $SYS_GUARANTEE_2$0
 (!$Mode_Control_Impl_Instance__seconds_to_cook$0>=0)
 (!$defs__rising_edge~1.Mode_Control_Impl_Instance__signal$0
 !$defs__initially_true~0.Mode_Control_Impl_Instance__b$0
], ...))

- This is only one of the necessary solutions to construct the implementation
- 900 lines of code
- A good intermediate representation to retranslate into any target language
Implementation

OSATE + Assume Guarantee Reasoning Environment (AGREE)

Jkind Model Checker (LUSTRE)

AE-VAL

Requirements Development

Realizability / Synthesis Algorithms

Auxiliary Tools

https://github.com/smaccm/smaccm

https://github.com/agacek/jkind

https://bitbucket.org/fedyukovich/ufo-gf.git

https://github.com/Z3Prover/z3
Future Work

- Extend work to Linear Real Arithmetic
- Improve transition relation representation
- Efficient translation of Lustre data-flow programs to non-minimal FSMs
- Formal verification of algorithm
- Improve realizability algorithm using an inductive invariant generation approach (Property Directed Reachability)
- Possible obstacle + Research subject: Mapping infinite to equivalent finite implementations
Thank You!
Definition (Reachable with respect to assumptions)

A state of \((I, T)\) is reachable with respect to \(A\) if there exists a path starting in an initial state and eventually reaching \(s\) such that all transitions are satisfying the assumptions

\[
\text{Reachable}_A(s) = I(s) \lor \exists s_{prev}, \text{. Reachable}_A(s_{prev}) \land A(s_{prev}, i) \land T(s_{prev}, i, s)
\]

Definition (Realization)

A transition system \((I, T)\) is a realization of the contract \((A, (G_I, G_T))\) when the following conditions hold

- \(\forall s. \ I(s) \implies G_I(s)\)
- \(\forall s, i, s'. \text{ Reachable}_A(s) \land A(s, i) \land T(s, i, s') \implies G_T(s, i, s')\)
- \(\exists s. \ I(s)\)
- \(\forall s, i. \text{ Reachable}_A(s) \land A(s, i) \implies \exists s'. T(s, i, s')\)