CYBER-PHYSICAL SYSTEMS AND CO-SIMULATION
AGENDA

Cyber-Physical Systems
Co-Simulation
INTO-CPS
Tool Development
Future Work
ME – CASPER THULE

MSc. in Computer Technology at Aarhus University in 2016
PhD Student at Aarhus University Department of Engineering
Software Engineering Research Group led by Professor Peter Gorm Larsen
THE WORLD USED TO BE SIMPLE
PHYSICS CREEPING IN

WHAT IS PHYSICS?
CYBER-PHYSICAL SYSTEMS (CPS)
CYBER-PHYSICAL SYSTEMS – THEY ARE COOL!

Cyber components controlling physical entities
DIFFICULT

Increasing Complexity

Market Pressure

Different Teams – Different Tools
COLLABORATIVE SIMULATION

Hybrid Co-Simulation

Theory and Techniques for Global Simulation of a Coupled System via Composition of simulators
A simulator is a black box mock-up of a constituent system.

Developed and provided by the team responsible for that system.

Need to couple simulators
STANDARD – FMI 2.0

Set of C interfaces
Set Inputs / Get Outputs
Do Step – Progress in time
Set State / Get State
Extension: getMaxStepSize
STANDARD – FMI 2.0

Functional Mock-up Unit
Tool-Wrapper, Web Service, HiL, SiL
CONNECTING SIMULATORS

Calculate dependencies
Topological sort
JACOBIAN ITERATION
INTO-CPS

Integrated Toolchain for Model-based Design of Cyber-Physical Systems
MAESTRO – CO-SIMULATION USING FMI

Distributed co-simulation across platforms and architectures
MAN Diesel & Turbo (~80% of two-stroke maritime engines)

Step size constraints:
Zero Crossing
And others

start middle end
INTO-CPS APPLICATION

Frontend of INTO-CPS
Cross-Platform
Co-Simulation
Design Space Exploration
LTL Testing
VDM-RT + OVERTURE FMU

Dialect of VDM to model and analyze Real-Time embedded and distributed systems
Tool-Wrapper and Source Code FMU

cpu1 : CPU := new CPU(<FP>, 200);
controller := new Controller(levelSensor, valveActuator);
cpu1.deploy(controller,"Controller");

loop()==
cycles(2)
let level : real = levelSensor.getLevel() in ...

thread
periodic(10E6,0,0,0)(loop);
FUTURE WORK

Additional Iteration Methods (Gauss-Seidel and Strong coupling)
ESA simulation framework (SMP2)
FMI 2.1

Properties of Master Algorithms
Semantic Adaptation of FMUs
Crash course on:
Cyber-Physical Systems
Co-Simulation
FMI
Orchestration
INTO+CPS
Co-simulation: a Survey (ACM CSUR)

Figure references:
https://www.alltechbuzz.net/difference-between-programmer-coder-developer-software/
https://en.wikipedia.org/wiki/State_diagram
https://www.youtube.com/watch?v=ww57ZtE53Ic
https://www.cbronline.com/breaches/cost-cyber-crime-hit-8-trillion-next-five-years/
http://daviddewolf.com/hardware-vs-software-software-always-wins/
http://spiff.rit.edu/classes/phys369/workshops/w9a/impulse_ball.html

David Broman: Determinate Composition of FMUs
FMI 2.0 Standard